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Abstract
The diffusive thermal conductivity tensor of the A1-phase of superfluid 3He
at low temperatures and melting pressure are calculated beyond the s–p
approximation, by using the Boltzmann equation approach. The interaction
between normal–normal, normal–Bogoliubov and Bogoliubov–Bogoliubov
quasiparticles in the collision integrals are considered for important scattering
processes such as binary process. At low temperatures, we show that
the scattering between Bogoliubov and normal quasiparticles in binary
processes plays an important role in the A1-phase, and Bogoliubov–Bogoliubov
interaction is ignorable.

We show that the two normal and superfluid components take part in
elements of the diffusive thermal conductivity tensor differently. We obtain
the result that the elements of the diffusive thermal conductivities, Kxx , Kyy

and Kzz , are proportional to T −1, and also that the superfluid components of
the diffusive thermal conductivity tensor, Kxx↑ and Kzz↑, are proportional to
T 3 and T , respectively.

1. Introduction

3He has two stable principal superfluid phases, A and B, when there is no magnetic field [1]. If
a magnetic field is applied, A stretches down to zero pressure, and a new superfluid phase A1

appears between the A-phase and the normal liquid 3He. As the field is increased, the B-phase
shrinks toward lower T , while A1 grows [1].

In other words, in the presence of a static magnetic field, the A-phase of liquid 3He splits
into two phases, A1 and A2, where in the A1-phase only a single spin population is paired and
the A2-phase contains two independently paired spin populations [2].

Investigation of the coefficients of the diffusive thermal conductivity of the A1-phase has
not yet received attention. Most theoretical efforts have been concentrated on the evaluation
of the diffusive thermal conductivity of the B-phase. In [3–5], the Boltzmann equation was
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solved in the low temperatures limit for the thermal conductivity of the B-phase exactly. It
was found that the diffusive thermal conductivity varies with temperature as T −1, the same as
in the normal state. In [3], by using an approximate collision integral which gives nearly exact
results in the limits T → 0 and T → Tc, this coefficient was calculated for the whole range
of temperatures numerically. In [4], by choosing an appropriate trial solution, the Boltzmann
equation was solved variationally for the diffusive thermal conductivity of the B-phase. In [5],
the transport coefficients of the B-phase, in zero magnetic field, at low temperatures, along
with the calculation of transition probabilities in s–p approximation, were investigated. Also
in [6] for the A-phase, the diffusive thermal conductivity was calculated, and it was recently
used in [7] to investigate the thermal properties of some materials.

In this paper, we report on a study of the thermal conductivity of the A1-phase of superfluid
3He at low temperatures, melting pressure and high magnetic field up to 15 T, using a Boltzmann
equation approach. We assume that the magnetic field is sufficiently high so that all of the
quasiparticles with spin up go to the superfluid state and all quasiparticles with spin down stay
in the normal state. In other words, the superfluid part in 3He is associated with the Cooper
pair condensate and the normal fluid part with the unpaired fermions in excited states. In fact,
the high magnetic field is the main reason for the transition to the A1-phase with an anisotropic
gap [1–8]. Also, this field plays an important role in the polarization of spins. Furthermore, the
magnetic field explicitly enters into the form of the transition temperature. However, it should
be noted that here in our case of study, since we are dealing with the quasiparticle–quasiparticle
interactions, then the magnetic field does not play any explicit role. A similar study in which
the magnetic field does not appear can be found in [9–11].

We also consider normal–superfluid interactions which come from the scattering between
superfluid quasiparticles in the spin-up population, the so-called Bogoliubov quasiparticles,
and the normal fluid quasiparticles in the spin-down population. In a normal Fermi liquid at
low temperatures the only important collision process is the binary scattering of quasiparticles,
but in a superfluid the quasiparticle number is not conserved, and other processes as well as
binary processes can occur. So we take into account the following processes: decay processes
in which one Bogoliubov quasiparticle decays into three and coalescence processes in which
three Bogoliubov quasiparticles coalesce to produce one.

The Pfitzner procedure [12] has been used in the calculation of the quasiparticle scattering
amplitude (QSA) which appears in collision integrals of Boltzmann equation. This is the same
case for calculating the shear viscosity of the A1-phase of superfluid 3He at low temperatures
and near critical temperature [9–11]. For a system as dense as 3He there is no physical reason
to expect the contribution from higher partial waves in the QSA to be negligible, whereas in
the Pfitzner procedure, necessary conditions are established to explicitly construct exchange-
symmetric scattering amplitudes by adding higher angular momentum components. In this
procedure, a general polynomial expansion of the QSA is constructed. This expansion fully
contains the s–p approximation as a special case. Therefore the Pfitzner procedure improves
on other mentioned approximations.

The paper is organized as follows. In section 2, after introducing and discussing proper
transition probabilities for the A1-phase, the related Boltzmann equation is investigated. In
section 3, the diffusive thermal conductivity tensor has been calculated at low temperatures,
and in section 4, we give some remarks and concluding results.

2. Transition probabilities and the Boltzmann equation procedure

The interaction term in the Hamiltonian of the A1-phase of superfluid 3He, H , can be written
as [10, 11]
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H = 1
4

∑

�P1,
�P2,

�P3,
�P4

{[〈3↑ 4↑|T |1↑ 2↑〉(u4↑↑α
†
4↑ − v∗

4↑↑α−4↑
)(

u3↑↑α†
3↑ − v∗

3↑↑α−3↑
)

× (
u1↑↑α1↑ − v1↑↑α

†
−1↑

)(
u2↑↑α2↑ − v2↑↑α

†
−2↑

)]

+
[〈3↓ 4↓|T |1↓ 2↓〉a†

4↓a†
3↓a1↓a2↓

]

+
[〈3↓ 4↑|T |1↑ 2↓〉(u4↑↑α

†
4↑ − v∗

4↑↑α−4↑
)
a†

3↓
(
u1↑↑α1↑ − v1↑↑α

†
−1↑

)
a2↓

]

+
[〈3↑ 4↓|T |1↑ 2↓〉a†

4↓
(
u3↑↑α†

3↑ − v∗
3↑↑α−3↑

)(
u1↑↑α1↑ − v1↑↑α

†
−1↑

)
a2↓

]

+
[〈3↓ 4↑|T |1↓ 2↑〉(u4↑↑α

†
4↑ − v∗

4↑↑α−4↑
)
a†

3↓a1↓
(
u2↑↑α2↑ − v2↑↑α

†
−2↑

)]

+
[〈3↑ 4↓|T |1↓ 2↑〉a†

4↓
(
u3↑↑α†

3↑ − v∗
3↑↑α−3↑

)
a1↓

(
u2↑↑α2↑ − v2↑↑α

†
−2↑

)]}
.

(1)

The first and the second brackets in equation (1), are related to the superfluid and
normal component interactions, respectively. The interaction Hamiltonian contains the terms
α

†
4α

†
3α

†
−2α1, α

†
4α

†
3α2α1, α

†
4α1α−3α2, α

†
4α

†
3α

†
−2α

†
−1 and α−4α−3α2α1. These terms decay one

quasiparticle into three, convert two quasiparticles into two, coalescence three quasiparticles
into one, create four quasiparticles from the condensate and scatter four quasiparticles into the
condensate, respectively. The last two processes are not allowed, because in each process the
total energy should be conserved. It is noted that for obtaining H the following Bogoliubov
transformation has been used for spin up:

a �p,↑ = u �p,↑σ ′α �p,σ ′ − v �p,↑σ ′α
†
− �p,σ ′ (2)

a†
�p,↑ = v∗

�p,↑σ ′α �p,σ ′ + u �p,↑σ ′α
†
− �p,σ ′ (3)

where the matrix elements u �p,σσ ′ and v �p,σσ ′ can be chosen for the A1-phase as [13]

u �p,σσ ′ =
[

1

2

(
1 +

ε �p
E �p

)]1/2

δσσ ′ ; v �p,σσ ′ =
[

1

2

(
1 − ε �p

E �p

)]1/2

δσσ ′.

In the A1-phase we may write E �p = (ε2
�p + |� �p↑↑|2)1/2 sgn ε �p, where ε �p is the normal-state

quasiparticle energy measured with respect to the chemical potential and � �p↑↑ is the magnitude
of the gap in the direction �p on the Fermi surface [13]. |� �p↑↑| is equal to �(T ) sin θp, where
�(T ) is the maximum gap and θp is the angle between the quasiparticle momentum and gap
axis �̂ that is supposed to be in the direction of z-axis. For the non-unitary state of the A1-phase,
we have the following properties for u and v [13]:

u− �p,↑↑ = u �p,↑↑; v− �p,↑↑ = −v �p,↑↑. (4)

Because of the appearance of transition probabilities in the collision integrals of Boltzmann
equation, it is proper to discuss them now. By using the golden rule, the transition
probabilities related to Bogoliubov quasiparticles interaction due to binary, coalescence, and
decay processes, respectively, are

W22(↑↑) = 2π |〈4↑ 3↑|H |1↑ 2↑〉|2
W31(↑↑) = 2π |〈4↑|H |1↑, 2↑,−3↑〉|2
W13(↑↑) = 2π |〈3↑, 4↑,−2↑|H |1↑〉|2

(5)

(throughout this paper we put KB ≡ h̄ ≡ 1). The transition probabilities related to
normal–Bogoliubov component interaction due to binary, coalescence and decay processes,
respectively, are

W22(↓↑) = 2π |〈4↑ 3↓|H |1↓ 2↑〉|2 + 2π |〈4↓ 3↑|H |1↓ 2↑〉|2
W31(↓↑) = 2π |〈1↓|H | −2↓, 3↑, 4↑〉|2
W13(↓↑) = 2π |〈3↑, 4↑,−2↓|H |1↓〉|2.

(6)
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Here some points must be noted. The process of decaying a quasiparticle with spin up is
forbidden, because in such a case two outgoing quasiparticles out of three must have spin
down which, due to the conservation of the number of quasiparticles in normal state, is not
allowed. In a similar manner, the coalescence process of the normal–superfluid interaction
with a final spin-down state is also impossible. Moreover, the transition probability related to
normal component interactions is

W22(↓↓) = 2π |〈4↓ 3↓|H |1↓ 2↓〉|2. (7)

Now by using Wick’s theorem, H given by equation (1), properties of the matrix elements
u �p,σσ ′ and v �p,σσ ′ (equation (4)), and the following relations between T -matrix elements and
the scattering amplitudes for pairs of quasiparticles in singlet and triplet states, Ts and Tt ,1

〈4↑ − 1↑|T | −3↑ 2↑〉 ≡ TtII , 〈−1↑ 3↑|T | −4↑ 2↑〉 ≡ TtIII

〈4↓ 3↑|T |1↑ 2↓〉 = 〈4↑ 3↓|T |1↓ 2↑〉 ≡ 1
2 (−TsI + TtI)

〈4↑ 3↓|T |1↑ 2↓〉 = 〈4↓ 3↑|T |1↓ 2↑〉 ≡ 1
2 (TsI + TtI)

〈4↓ − 1↑|T | −3↑ 2↓〉 = 〈4↑ − 1↓|T | −3↓ 2↑〉 ≡ 1
2 (−TsII + TtII)

〈4↑ − 1↓|T | −3↑ 2↓〉 = 〈4↓ − 1↑|T | −3↓ 2↑〉 ≡ 1
2 (TsII + TtII)

〈−1↓ 3↑|T | −4↑ 2↓〉 = 〈−1↑ 3↓|T | −4↓ 2↑〉 ≡ 1
2 (−TsIII + TtIII)

〈−1↑ 3↓|T | −4↑ 2↓〉 = 〈−1↓ 3↑|T | −4↓ 2↑〉 ≡ 1
2 (TsIII + TtIII)

(8)

(subscripts I, II and III of Tt and Ts identify different binary processes) [11], we can explicitly
write the transition probabilities as follows:

W22(↑↑) = 2π{[(|v1|2|v2|2|v3|2|v4|2 + |u1|2|u2|2|u3|2|u4|2 + 2u1v1u2v2u3v3u4v4)|TtI |2]

+ [(|u1|2|v2|2|u3|2|v4|2 + |v1|2|u2|2|v3|2|u4|2 + 2u1v1u2v2u3v3u4v4)|TtII |2]

+ [(|v1|2|u3|2|u2|2|v4|2 + |v2|2|u4|2|u1|2|v3|2 + 2u1v1u2v2u3v3u4v4)|TtIII |2]

− [(|v1|2|v4|2u2v2u3v3 + |v2|2|v3|2u1v1u4v4 + |u2|2|u3|2u1v1u4v4

+ |u1|2|u4|2u2v2u3v3)(T ∗
tI TtIII + TtI T

∗
tIII)]

− [(|v4|2|v2|2u1v1u3v3 + |v1|2|v3|2u2v2u4v4 + |u1|2|u3|2u2v2u4v4

+ |u2|2|u4|2u1v1u3v3)(T ∗
tI TtII + TtI T

∗
tII)]

+ [(|u3|2|v4|2u1v1u2v2 + |v1|2|u2|2u3v3u4v4 + |u1|2|v2|2u3v3u4v4

+ |v3|2|u4|2u1v1u2v2)(T ∗
tIII TtII + TtIII T

∗
tII)]},

W31(↑↑) = 2π |[(v∗
1v

∗
2 u3v4 − u1u2v

∗
3 u4)TtI + (u1v

∗
2v

∗
3v4 − v∗

1 u2u3u4)TtII

+ (v∗
1 u2v

∗
3v4 − u1v

∗
2 u3u4)TtIII ]|2,

W13(↑↑) = 2π |[(v∗
1 u2v3v4 − u1v2u3u4)TtI + (v∗

1v2v3u4 − u1u2u3v4)TtII

+ (v∗
1v2u3v4 − u1u2v3u4)TtIII ]|2,

W22(↑↓) = (π/2){|u1|2|u3|2|(−TsI + TtI)|2 + |v1|2|v3|2|(−TsII + TtII)|2
+ |u1|2|u4|2|(TsI + TtI)|2 + |v1|2|v4|2|(TsIII + TtIII)|2
− u∗

1v
∗
1 u3v3(−TsI + TtI)

∗(−TsII + TtII) − u1v1u∗
3v

∗
3(−TsI + TtI)(−TsII + TtII)

∗

− u∗
1v

∗
1 u4v4(TsI + TtI)

∗(TsIII + TtIII) − u1v1u∗
4v

∗
4(TsI + TtI)(TsIII + TtIII)

∗},
W31(↓↑) = (π/2){|v3|2|u4|2|−TsIII + TtIII |2 + |u3|2|v4|2|TsII + TtII |2

+ u3v3u∗
4v

∗
4(−TsIII + TtIII)

∗(TsII + TtII) + u∗
3v

∗
3 u4v4(−TsIII + TtIII)(TsII + TtII)

∗},
1 Properties of Ts and Tt are given in [14, 15].
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W13(↓↑) = (π/2){|u3|2|v4|2|TsII + TtII |2 + |v3|2|u4|2|−TsIII + TtIII |2
+ u3v3u∗

4v
∗
4(TsII + TtII)

∗(−TsIII + TtIII)

+ u∗
3v

∗
3 u4v4(TsII + TtII)(−TsIII + TtIII)

∗},
W22(↓↓) = 2π |TtI |2. (9)

In addition, W22(↓↑) is obtained from W22(↑↓) simply by the replacements 1 ↔ 2 and 3 ↔ 4.
Our previous calculations [10, 11] show that only W22(↓↓), W22(↑↑), and W22(↑↓) are

the dominant terms at low temperatures. In fact, at low temperatures, we have sin θpi
∼= 0 (i =

1, 2, 3, 4) [6]; therefore the explicit form of the remaining transition probabilities shows that
they are negligible when v ≈ 0. After doing a little algebra, equation (9) at low temperatures
gives

W22(↓↓) = 2π |TtI |2 (10)

W22(↑↑) ∼= 2π |TtI |2 + (π/4)(|TtII |2 + |TtIII |2) (11)

W22(↑↓) = W22(↓↑) ∼= (π/2)(|−TsI + TtI |2 + |TsI + TtI |2). (12)

Now, Tt and Ts appearing in equations (10)–(12) are given. By using the Pfitzner
procedure [12], TtI and TsI are given by

N(0)TtI ,sI(ν, P) =
∞∑

k=0

k∑

l=0

alk(k + 1)1/2(2l + 1)1/2(P2/4 − 1)l Pl(ν)P(2l+1,0)
k−l (P2/2 − 1)

k = 0, 1, . . . ; l = 0, 1, . . . , k (13)

where the coefficients with l even (odd) belong to the singlet (triplet) part of the QSA.
N(0) = m∗ pF/π

2, Pl(ν) and P(a,b)
n (x) are the density of states at the Fermi level, the

Legendre polynomials and the Jacobi polynomials, respectively. Definitions of P and ν are
P ≡ 2 cos(θ/2) and ν ≡ cos ϕ, where θ is the angle between the momenta of the incoming
particles, namely �p1 and �p2, and ϕ is the angle between the planes spanned by the momentum
vectors of the incoming particles and the outgoing particles.

It is noted that at low temperatures θ is small for the scattering of two superfluid incoming
quasiparticles, and its maximum value is πT /�(0) [6], where �(0) (maximum gap) is equal to
1.77 TC due to strong coupling effects [16]. To clarify the reason for the smallness of θ , we note
the following points. First, at low temperatures, Bogoliubov quasiparticle momentum vectors
are located around the nodes of energy gap; consequently, these vectors make small angles
around the gap axis. Second, for Bogoliubov quasiparticles, θ follows the same behaviour
of θp in being small. Based on the above facts, by using equation (13) for different binary
processes, when we truncate the summation in equation (13) for k = 3 at melting pressure,
then TsI, TtI , TtII and TtIII in equations (10)–(12) take the following explicit forms [10, 11]:

N(0)TsI = 2.47 + 6.61 cos2 θ

2
+ 17.69 cos4 θ

2
− 11.2 cos6 θ

2

+ (3 cos2 ϕ − 1) sin4 θ

2

(
3.86 − 6.72 cos2 θ

2

)

N(0)TtI = sin2 θ

2
cos ϕ

[(
−3.3 + 2.28 cos2 θ

2
− 5.82 cos4 θ

2

)

− 0.74 sin4 θ

2
(5 cos2 ϕ − 3)

]

N(0)TtII = −
[

4.78 + θ2

(
0.54 cos2 ϕ

2
− 3.05 sin2 ϕ

2

)]
,

N(0)TtIII =
[

4.78 + θ2

(
0.54 sin2 ϕ

2
− 3.05 cos2 ϕ

2

)]
.

(14)



4446 R Afzali and N Ebrahimian

Now, we are in the position that we should utilize the quantities calculated above. As mentioned
earlier, our motive to calculate the transition probabilities has been to use them in the Boltzmann
equation of the A1-phase. By keeping the terms which contribute to the diffusive thermal
conductivity, to first order in δνp,σ ,2 we have for the initial quasiparticle with spin up (and
similarly for spin down) the Boltzmann equation [1, 14, 15]

− ∂ν0
↑

∂ E �p,↑
∂ Ep,↑
∂pk

E �p,↑
T

∂T

∂rk
= I (δνp,↑). (15)

Also, I , the collision integral, only consists of binary processes; i.e., I22(δνp,σ ). Considering
the nature of the A1-phase (at low temperatures) and the explicit forms of the transition
probabilities for this phase, some points on I are in order. The function W22, present in
I22(δνp,σ ), stands for (1/4)W22(↑↑) + (1/2)W22(↑↓), and (1/4)W22(↓↓) + (1/2)W22(↓↑) for
a spin-up/down initial quasiparticle, respectively. For I22(δνp,↑) it is clear from equations (11),
(12) and (14) that the contribution of W22(↑↑), due to its dependence on θ , in the collision
integral I22(δνp,↑) is proportional to T 2, while W22(↑↓) results in a temperature-independent
constant contribution in this integral. Hence, we conclude that I22(δνp,↑) = I22(↑↓) (where
I22(↑↓) is the part of I22(δνp,↑) associated with W22(↑↓)). It should be noted that this is
not the case for I22(δνp,↓) = I22(↓↓) + I22(↓↑). Now, the explicit form of the linearized
collision terms in the Boltzmann equation can be obtained. For example, for I22(↑↓) we
have

I22(↑↓) = (m∗)3T 2

32π4

1∑

m=−1

Um p|m|
1 (cos �)eim


(−∂v0
↑

∂ E1

) ∫
dx K (t, x)

∫
sin θ dθ dϕ

cos θ
2

× (|−TsI + TtI |2 + |TsI + TtI |2)[q(t) + q(−x)p2(cos θ)

− q(x){p1(cos θ13) + p1(cos θ14)}] (16)

where t ≡ E1/T , x ≡ E3/T , y ≡ E4/T and K (t, x) = e−t +1
e−x +1

x−t
e(x−t)−1 . q(t) is defined by

δνp,σ = −(1/T )ν0
p,σ (1 − ν0

p,σ )(∂ E1/∂ P1k)µ q(t)[∂T /∂rk]. Also, θ1i is the angle between
�p1 and �pi , and θ13,14 are related to θ and ϕ with the relation cos θ13,14 = cos2 θ

2 ±
sin2 θ

2 cos ϕ. By substituting equation (16) in (15) and considering K (t, x) = K (−t,−x),
we have [17]

∫
dx K (t, x){qsσ

− λ1sσ
qsσ

(x)} = Bσ

{∇µ

∇T
+ T t

(
∂ E2

∂p2

(
∂p

∂ E

)2)

µ

}
(17)

∫
dx K (t, x){qaσ

(t) − λ1aσ
qaσ

(x)} = Bσ t (18)

where qsσ
and qaσ

are the symmetric and antisymmetric parts of q(t), respectively, and σ is
simply the spin index. At low temperatures, equation (18) dominates which results in the
fact that equation (17) can be ignored [17]. In equation (18), λ1aσ

and Bσ are introduced as

λ1aσ
=

∫
sin(θ)

cos( θ
2 )

dθ dϕW22{1 + 2 cos θ}
/∫

sin θ

cos( θ
2 )

W22 dθ dϕ (19)

and

Bσ = 16π5

m∗3T 2

[∫
sin θ dθ dϕ

cos θ
2

W22

]−1

(20)

from which, by using equations (10), (12), and (14), they take the following explicit forms:

2 The disturbance δνp,σ is defined by νp,σ = ν0
p,σ + δνp,σ , and νp,σ is the quasiparticle distribution function of

superfluid; in addition, ν0
p,σ is (exp(E0

p/T ) + 1)−1.
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λ1a↑ ∼= 1.19, λ1a↓ = 1.11 (21)

B1a↑ ∼= π5

m∗3 T 2

N(0)2

186.53
and B1a↓ = π5

m∗3 T 2

N(0)2

195.81
. (22)

Following the Sykes et al procedure [17], from equation (18) it is obtained that
∫ ∞

−∞
dt

dν0
σ

dt
q1aσ

(t) t = −2B1σ

3 − λ1aσ

H (λ1aσ
) (23)

where we have H (λ1a↑)
∼= 0.49 and H (λ1a↓)

∼= 0.5.3

In the next section, by using equations (21)–(23), we will proceed to calculate the diffusive
thermal conductivity.

3. Diffusive thermal conductivity

The diffusive thermal conductivity, in general, is a second-rank tensor, which is defined by the
relation

Ji = −Ki j∇ j T (24)

where Ji , the energy flux, is

Ji =
∫

dτ E
∂ E

∂ Pi
δνp,σ . (25)

When δνp,σ is inserted in equation (25) and compared with equation (24), we get

Ki j = − 4P3
F

m∗3
(2π)3

T
∫

d�p p̂i p̂ j

[∫
dt

∂ν0
↑

∂ t
q1a↑(t)t +

∫
dt

∂ν0
↓

∂ t
q1a↓(t)t

]
. (26)

By replacing equation (23) in (26), we have

Ki j = − 4P3
F

m∗3
(2π)3

T
∫

d�p p̂i p̂ j

( −2B↑
3 − λ1a↑

H (λ1a↑) +
−2B↓

3 − λ1a↓
H (λ1a↓)

)
. (27)

After substituting Bσ , λ1aσ
, and H (λ1aσ

), and taking the angular integrations, we have

Kxy = Kxz = Kyz = 0,

Kxx↓ = Kyy↓ = Kzz↓ = 0.06
P3

F

(m∗)4
N(0)2 1

T
,

Kxx↑ = Kyy↑ = P3
F

(m∗)4
N2

0

(
0.11

T 3

T 4
c

)
,

Kzz↑ = 0.15
P3

F N2
0

(m∗)4

T

T 2
c

.

(28)

By noting that Kxx = Kxx↑ + Kxx↓ and Kzz = Kzz↑ + Kzz↓, finally we have

Kxx ≡ Kyy = Kzz = 0.06
P3

F

(m∗)4
N2

0
1

T
. (29)

Also, the diffusive thermal conductivity tensor for a system with uniaxial symmetry can
be written in terms of the components of the symmetry axis l̂ with two coefficients K‖ and K⊥

Ki j = K‖l̂i l̂ j + K⊥(δi j − l̂i l̂ j ).

By taking the polar axis along l̂, we have K|| = Kzz and K⊥ = Kxx = Kyy. By using values
of vF [18] and m∗/m [19], finally we have

3 To see the explicit form of H (λ1a), refer to [17].
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Kxx ≡ Kyy = Kzz = 6.00 × 10−5 1

T
(in SI units) (30)

where we have used units in which all constants have their real values, such as h̄ = 6.62×10−34

(SI).
It must be stressed that here in our calculation we have made an important assumption. We

have supposed that the only dominant mechanisms in the calculation of the thermal conductivity
of the A1-phase of superfluid 3He, at low temperatures, are the ones that are elastic. In the
calculation of the thermal conductivity it is expected that both elastic and inelastic scattering
processes should be considered. In other words, generally elastic scattering may not be the
only phenomenon responsible for the thermal conductivity. This study might be a formidable
task, because for example one may need to know details of the impurity potentials and the
exact nature of the processes responsible for inelasticity. However, it is known that particle–
particle scattering is the only important mechanism limiting the diffusive thermal transport in
normal Fermi liquid 3He [14] and superfluid 3He [15]. Actually we lack such information on
the A1-phase of superfluid 3He. In the present case, considering our limited knowledge of the
existing processes active in A1 superfluidity, what can be said is to find a witness. In fact, in
viscosity calculations of the A1-phase of superfluid 3He (both at low temperatures [10, 11] and
near Tc [9]), ignoring inelastic processes gave rise to a result compatible to the experiment.
This strengthens the idea that in our case of study, we also can assume the ignorability of
inelastic processes. However, an exhaustive study of this subject is currently not available.
By taking the above facts into account we have considered all possible and important elastic
interactions of Bogoliubov and normal quasiparticles.

4. Discussion and conclusion

We have calculated the diffusive thermal conductivity tensor of the A1-phase of superfluid
3He. We have considered the transition probabilities for the cases where both the normal and
Bogoliubov quasiparticles are present in decay, coalescence, and binary processes, beyond
the s–p approximation. We have used the Pfitzner procedure to obtain singlet and triplet
quasiparticle scattering amplitudes which appear in the transition probabilities. Then, by using
these probabilities and the result of the Boltzmann equation procedure, we have obtained the
diffusive thermal conductivity tensor of the A1-phase of superfluid 3He.

It is noted that in the calculation of Ki j (or equivalently of both K⊥ and K‖), interaction
between superfluid and normal fluid is of special importance, whereas the contribution from the
interaction between Bogoliubov quasiparticles at low temperatures is negligible. This is also
the case in the calculation of the shear viscosity tensor of the A1-phase at low temperatures.
To clarify the point, we consider, for example, the values of λσ . Both the λ↓ and λ↑ include
normal–Bogoliubov interaction. In the λ↓, in addition, we have normal–normal interaction,
which is much smaller than normal–Bogoliubov interaction. Then it is concluded that the λ↓
and λ↑ are not so different.

Also, however, the number of the quasiparticles in superfluid is not fixed (and then some
other processes such as decay and coalescence can occur);, at low temperatures it has been
shown that just the binary processes are dominant in the calculation of Ki j . This is also the case
in the calculation of the thermal diffusive coefficient of the A-phase and the shear viscosity
tensor of the A1-phase.

We have found the components of the diffusive thermal conductivity, Kxx↑ and Kzz↑, with
T 3 and T temperature dependences, respectively. Also the components of K↓ are proportional
to T −1. It has been seen that K↑ does not play an important role in the diffusive thermal
conductivity components, in comparison with K↓. Therefore, the components of the diffusive
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thermal conductivity at low temperatures in the A1-phase of superfluid 3He are proportional
to T −1. It should be recalled that the superfluid effect has come into play via the transition
probabilities in the calculation of K .

Now, we should compare the thermal conductivities of the A- and A1-phases of the
superfluid. In the A1-phase, the temperature dependence of the components of the thermal
conductivity is related to λ. If λ is considered fixed with temperature (as in the case of
the B-phase), then Kzz and Kxx have temperature dependences as T −1 and T , respectively.
Otherwise, Kzz has a T −3 dependence, and Kxx has a T −1 dependence (as in the case of the B-
phase). In contrast to the A-phase, in the A1-phase, λσ does not play this role in the temperature
dependence of the thermal conductivity, and all of the components have a T −1 dependence,
as for the normal component. However, the underlying physics of this special temperature
dependence of thermal conductivity of the A1-phase, in comparison to the other phases, can
be related to the existence of the normal part in the A1-phase and also the dominance of the
normal part in competition to the superfluid part of the A1-phase. The physical reason why
the normal part dominates can, in principle, be attributed to the smallness of the phase volume
arguments of the superfluid part of the A1-phase, at low temperatures, and also to the special
structure of the order parameter in this phase in comparison to the other phases.
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